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Low Degree Low Closeness Low Betweenness

High Degree
Embedded in cluster that 
is far from the rest of the 

network

Ego's connections 
are redundant - 
communication 

bypasses him/her

High 
Closeness

Key player tied 
to important 
important/

active alters

Probably multiple 
paths in the 

network, ego is 
near many people, 

but so are many 
others

High 
Betweenness

Ego's few ties 
are crucial for 
network flow

Very rare cell. Would 
mean that ego 

monopolizes the ties from 
a small number of people 

to many others.

centrality Recap

(A)

(b)

:

(a) High degree , low closeness : embedded in a cluster far from the

rest of the network
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(b) High closeness , low degree : tied to important alters / key player
3 4

2 I 5

di =3 Ci = -7 = 0.636
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G) High betweenness , low degree : ego's few ties crucial
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bi = 12 di = 2 Ci = # = 0.583

Network Formation First steps - Dyad , Triad , Bridge

Dyad

• 2 actors and ties linking

• Kind of relation

• Dyad census - properties of tie
- mutual

-

asymmetric
- null Cno tie)

- connections between 2 nodes ; ties :

- Granovetter's strength of weak ties (strength)
-

Multiplexity of tie (multiple ties with another node)



Triadic closure

• If 2 people have a common friend
,
increased likelihood of them

becoming friends

BC
> GF > ED result of triadic closure

GD not a result of triadic closure

Types of closure

Triadic closure
-

common friend
- A- B

,
B-C ; A -C becomes

Foci closure
- two individuals with shared interests connect

- two students in class preparing for GRE /GATE become close

Membership closure

- existing connections influenced to join organisation
- members of the same club/ activity
-

Google Dev Club
,
PIL - encourage friends to join



Co - Evolution of Social Network

• All types of triadic closure together

- Bob intros Anna to Claire triadic closure)
- Karate club intros Anna to Daniel (focus: Karate)
- Anna intros Bob to karate Cmembership closure)

• Co -evaluation of social affiliation network

Triadic closure q common Friends

• Observed that probability of triadic closure grows linearly with
number of friends lemail communication dataset)

•

p= Probability that AUB become friends when they have
one common friend

• 1 - p = Probability of not becoming friends

• C- P)
"
= Probability of not becoming friends after having

k common friends

' l - Ctp)
"
= Probability of A Ee B becoming friends after

having k common friends



• Pressure to become friends

→

A B

'

'

-

-
-
- - - -

-
-
-
-
-
-

1- ( 1- p
)k

Triadic closure and Density of Ego's Friendship Network

• Two extreme scenarios :

i. My friends do not know each other

2 . Each of my friends knows the other

• strength of friendship network

- Ratio of no . of connections to total possible no . of connections

between a node's friends/ connections

strength of
friendship -_ 9

To

n=q
Bridges

° Bridges : edges whose removal will increase number of connected

components



Local Bridge

. Removal of local bridge increases the distance between A

and B

• It is called a local bridge if they have no nodes in common

• Span of local bridge : no . of hops to connect two end nodes

if edge removed

measuring cohesion

1. Shortest path : path between 2 nodes with shortest length
-

Vi 4 Vj → lij
2. n- Hop neighbourhood: of a node; set of nodes within n hops
in shortest path from the node
-

adjacency matrix to nth power : n - hop connections and no . of

shortest paths

3. Density : proportion of dyadic connections present

Density
undir

= L Density dir
= L

ncn-17/2 ncn-1)

Problems :
-

Decreasing density with increase in network size

-

Increasing density with increase in cohesive sub- groups
- Ties mainly from a single person



ties mainly through j
j

ego i
Density li)

alter ties

4. Diameter and average path length
- Diameter: longest geodesic/ longest shortest path between any 2
nodes

-

Average path length : average geodesic
2

s diameter--

l Max ( 1,2 , 3,1 , / , 2,1,
1
, I ,
2)

4
=3

5
one possible

Degree Distribution diameter

• Probability distribution of the degrees over the whole network

•

p, = fraction of vertices in a network with degree x

Entropy of Degree Distribution

high entropy - random
H = E- pnlogpn



ASSORTAVITY

• Preference for a network's nodes to attach to others that are

similar

• Disassortative : attach to others that are different

• plot of average degree of neighbours of a node vs degree k of

node

h -- l
•

Eg :

b.=3
k=3 k= I

k=3

6=1

• Assortative : increasing slope
• Disassortative : decreasing slope

^

graph too degree avg degree of neigh3 - •

small

• I 3
2
-

2 0

3 713
l -

l I 1 >

I 3



Assortative mixing

• Assortative Mixing coefficient r

• Perfect assortiativity : normalised associativity matrix with 1's on the

diagonal Cr -- 1)

• Perfect disassociativity : all diagonal elements 0 lr= -1)



Rich Club

° Nodes with many connections are clustered together

• Rich club coefficient for a degree k
- n = no . of nodes with degree > k

- Rich Club Coefficient = no . of edges between n nodes

Max no . of edges between n nodes

k =3

2 coefficient
-
-I

4
6

I

3

Reciprocity 4 Transitivity

1. Reciprocity

• measure of likelihood of vertices in a directed network to be

mutually linked - dyadic relationship
• Closed loops of length 2

• Only in directed graphs
•

Eg : mutual followers on Twitter, Tumblr, Instagram

]

A
r

B



•

Reciprocity : no . of reciprocal pairs in the graph /max

R= I Aij Aji ✓ trace [sum of

diagonal)iii. icj = ¥-1 ✗ g-TRIAD
max → [ ←

number

reciprocity of edges

where TRCAZ) = A , , , -1 Aziz -1 - . - + An ,n

- AZ stores the 2-hop adjacency matrix . Diagonal elements
are nodes with 2-hop closed loops

•

Eg :

dest
V'
r

s

V2
I 0 0 }>

a--1: : :
v

V3

A'=/ to I

9)
IEI --4

I TrCA4=2

I 0 0

i. R=

4- = Ig (fraction of edges in net

that are reciprocal)



2. Transitivity

• Undirected graph : 4 possible triadic relationships

• Count of relative prevalence of 4 types of relations across all

possible triples : sense of population
- isolation

, couples only, structural holes , clusters

• Transitive linking : if V
,
→ v2 and v2→ v3 lead to formation of

↳→ v, , transitive linking

• If a friend of my friend is also my friend

•

Higher transitivity ⇒ denser graph ⇒ closer to complete graph
call nodes linked to all other nodes)

•

Measuring transitivity : global 4 local clustering coefficients

- Real world : friendships highly transitive thigh average local clustering
coefficients)



(a) Local Clustering Coefficient ( Watts and Strogatz)

•

Transitivity at the node level (undirected graphs)

• How strongly pairs of neighbours of a node are connected

CCV;) = no . of pairs of neighbours of vi that are connected
no . of pairs of neighbours of Vi

die
,

/

Q: Find local clustering coefficient of Vi

3

2

4

I

CCV;) =¥ = 2- =

Li



• Low local clustering coefficient of vi ⇒ Vi controls flow of

info 9 is influential (more structural holes around v;)

(b) Global clustering coefficient cwalts and strogatz)

•

Average local clustering coefficient of all nodes

n

Cws =

# Eccvi)
in

•

High clustering coefficient : networks dominated by vertices of low

degree

(c) Global clustering coefficient crewman
, Strogatz and Watts)

- Closed path of length 2 : fully connected triangle
-

V1 V2 , V24 V3 , V3 ⇒ V, Lundirected)

•

Clustering coefficient

C = I closed paths of length 21
1paths of length 21

- Alternative calculation: every triangle has 3 closed paths of length
2

c-- number of triangles ✗ 3

number of connected triples



Q: Find global (Newman , strogatz and Watts) clustering coefficient
of

[ = no . of triangles ✗ 3
=
2×3

= § = ¥
no . Of triples 2×3+2

I
V24V4 >V2V3V4

0: Find local clustering coefficient of node 3
,
the global (avg)

clustering coefficient and the global CNSW) clustering coefficient

I 4
CCCD =L =

I

3 Zcz

2 5
CCCZ) = 1- = I

Zcz

CCC37 = 1- = g-
(( (4) = 0

4C
2

CC (5) = 0

CC
avg

=

f- ( I + It f- +0+0 ) = j3- = 0.43



((
Nsw

= I ✗ 3

1×3-15

= §

Efficient way to Find Triples

• For a node i in an undirected graph:
(a) di = 1

, triples centered at i=o

(b) di --2 , triples centered at i= I

(c) di =3
, triples centered at c-=3

(d) di --4 , triples centered at i= 6

(e) di -- n , triples centered at i= nCn÷ or ncz

(a) (b) (c)

(d)

GROUPS 4 SUBSTRUCTURES

- Identifying substructures within a network

• Approaches
- Top down
- Bottom up



1- TOP DOWN APPROACH

• Look at entire network as a whole and identify sub-structures

• Holes / weak spots in the overall network structure define lines of

division

•

Finding these weak spots : undirected and directed graphs

(a) Undirected Graph - connected Ee disconnected components

• If a pair of vertices has no path between them ,
the network is

termed as disconnected (else : connected)

• Component : maximal subset of network that is connected [every pair
of vertices has a path connecting them)

(b) Directed Graph - strongly connected and weakly connected

•

components can be either strongly connected or weakly connected

• strongly connected : every pair of vertices u and v has a directed

path from u to ✓ as well as from v to u



•

weakly connected : if replacing all the directed edges with undirected

ones leads to the formation of a connected component

• Out components of node A : set of vertices reachable from node A

via directed paths

• In components of node A : set of vertices ( including A) from which

there is a directed path to A

• All members of strongly connected component have same in- component



• All members of strongly connected component of A are members of A's

out - component

the Bow - Jie structure of the Web

• web divided Cbroadly) into large pieces

• Pieces

(a) One giant strongly connected component Csec)

(b) In : nodes upstream of the SCC - can reach the SCC but cannot

be reached from it

(c) Out : nodes downstream of the Scc - can be reached from the SCC

but cannot reach the Scc



GIANT COMPONENT

• Real
,
undirected networks: typically one large component - giant

component - and large number of small components

Preferential Attachment

• Albert - Lñszlo Baraboisi
,
1999 : most complex networks evolve as a

result of preferential attachment Crich get richer)

• New node joining a network : likely to attach to a node with

high degree
- connection likelihood ✗ degree of target node

Blocks and cut Points

•

Finding weak spots - if a node were removed
,
would the structure

become divided?



i called cut points ; divide network into blocks

2. BOTTOM UP APPROACH

° How dense connections are built up from dyads and triads

clique

• Maximal subset of vertices in a graph that is complete
call nodes directly connected to all other nodes)

• clique of k members : all members in subgraph have a degree
of k-1 Cif subgraph is seen as an independent graph)

dsub =3 dsub=3
,
- - -

- - -
- clique

1 I

1 I

1
1

,
I

dsub
,
=3 '

l

l l

l l

l
-
- -

- - - -
-

'

dsub =3

. Smallest clique : dyad
- cliques can overlap

. Definition of clique is too rigid ; can relax restriction :
1- N - clique / N-clan
2. k- plex / b- core



1- N - Clique sometimes enforced ,
← sometimes relaxed

•

Any (maximal) set of S nodes where the geodesic path between

every pair of nodes is EN

• Strict clique : 1-clique call nodes connected to all other nodes

in a subgraph?

B C

D

A

f E

• { A ,B,F } : 1- clique

• { C
,
D ,E} : 2- clique Cnot Max?

• { B
,
C
, D , E} : 2-clique (not Max) notice : path E-F-B not in

subgraph even though it is geodesic

• { F)B) C) D , E } : maximal 2- clique

• { A , B , C , D , E , F} : maximal 3- clique

2. K- clan

i Restrict K- cliques : all geodesics of subgraph pass through
subgraph



- All ties among actors occur through other members of the

group

• Diameter Ek

• For same graph , { B, C;D ,E } is not a 2-clan

• { B
,
C
, D , E , F } : 2- clan

3- k- Plex

- All nodes have minimal degree of 151 - k where 1st is the

number of nodes in the subgraph of vertices s

• If k=1
,
all nodes in S have a degree ds of at least

1st - I C strict clique / clique)

ds ? 151 - I

4. k- core

• All nodes in subgraph have a degree of at least K

• 0- core : all graphs are 0 - cores (even isolated nodes)



i 1- core: graph with no isolate

• 2-core : at least 2 neighbours (no pendulum structure)

• the graph below has 2 pendulum structures Chota 2-core)

• To find 2-core
, recursively remove all nodes with degree < 2

until a 2-core graph is left

> > > { }

- Graph above has no 2-core

- Modified graph with a non- empty 2-core

>



Algorithm to find k-core

• start with original graph and remove all nodes with degree < k

• Remove all edges connected to removed nodes

. Update degrees of nodes in the graph after deletion

• Repeat until all nodes have degree 2k Ck- core formed)

5. K- crust

• What is left in the graph after removal of k- core

- Loosely connected periphery

6. U- corona

• Subgraph of a- core where all nodes have exactly k neighbours
in the core

COMMUNITY DETECTION

• Communities : structures of nodes with strong internal connections
and weak connections to outside the structure

• Maximally decoupled

- Algorithms :
1. Clique Percolation method

2. Girvan Newman

3
. Louvain



1. CLIQUE PERCOLATION METHOD (CPM)

i Assume communities formed from a set of cliques and edges
connecting them

- Use clique as seed

Input
• clique size K Cho . of nodes)
• Network

algorithm

Canion)



Q: consider the graph shown. For a-3
, apply CPM

- Cliques of size k=3 Cfully connected subgraphs of 3 nodes)

Cl . {v
, > V2>V3}

C2
. { V3 ,V4 , V5 }

( 3
. {V4 , V5 , V6}

( 4
. { V4 , V5 > V7 }

c5
. { v4 >V6.43

( 6. { V5 , V6 14}
( 7 . { V6 , Vy , V8}

CS . {Vg , V9 , V10}

- cliques that share b-1=3-1--2 nodes are connected

Conly considering connections from i→j where j > i to avoid

duplicates)

t.CI

2. C2 (3,14

3. (3 (4
,

C. 5
,
Cb

4. ( 4 (5
,
(6

5. C. 5 ( 6
,
CT

6. Cb (7

7. (7

8. (8



see slides for

c3 Cs matrix computation
456 467

C2 C. 7

345
678

( 4 Cb
C 8

Cl 457 567
123 8910

- connected components are returned as communities (here ,

3 components)

- Communities :

1- {V
, , V2, V3 } (union)

2. { V3 , V4 , V5, Vo , V, , V8 }
3. { Us

, Vq , Yo}

- Nodes V3 6 Vs belong to 2 communities each loverlapping
communities)

• CPM is computationally intensive Conly perform for small h

values in practice)

• Adjacent cliques of sizes k : share k- l nodes



• For k=3

clique 2

ry

et not clique 3

clique 1 adjacent adjacent

• communities

community 2

community I



2. GIRVAN - NEWMAN ALGORITHM

• Group - based community detection

• Edge betweenness : no . of shortest paths that include a particular
edge
- measures how bridge - like an edge acts

- bridge between communities - high betweenness

• Hierarchical communities - divisive clustering performed cassume

initially one big cluster and divide)

- Removing edges of high edge betweenness splits up graph
into communities

algorithm
1. calculate edge betweenness for all edges
2. Remove edge with highest betweenness

3. Recalculate edge betweenness

4. Repeat

Q: consider the graph shown
. Apply Girvan- Newman algorithm to

find 3 communities . Edge betweenness shown below .



00 Max

- First edge to remove : e (4,5) (or el4,6))

-

Recompute edge betweenness

2 3

y
e (4)6) : { 1,2>3,4} to {5>6,7 , 8,9 }

1

through eC4>6)

6 7
.

'

. betweenness = 4×5=20

9

5 8

2 3

et, 97 : betweenness -_ 4×1
, 415,617,8 } to {9}

6 7

9

5 8



- Dendogram

computing Betweenness values

•

Example



- For source A

1 1 1 1

2
I

2

sum of → ← sum of DGE

BGC
3 3

sum of → c- sum of G GH
f-44

6

← sum of 19J

- Assume each node generates 1 unit of information that

'flows' through the graph

- Divide this flow (+ incoming flow) among all edges directly
above it [start at bottom)

- node K : 1 unit of flow divided evenly between I and J ⇒

edge CI, K) and edge 15,1L) get a flow of 42 each

- node I : incoming Yz unit + its own 1 unit of flow
,
2 parts to

F and 1 to ↳ ⇒ edge CF, I ) gets yz and edge CG ,I)

gets 1

- Repeat unit source A



- Repeat for all n source vertices

- Time complexity : 01mn) where m = no . of edges , n= no . of nodes

- Repeat for each edge removed → algorithm complexity 01min)

3. LOUVAIN ALGORITHM

• Modularity: how likely the community structure was created at

random

• Expected no
.
of edges between 2 nodes vi a vj of degrees

di and dj Cm -- no . of edges in graph)



• For any edge out of vi , probability that it connects to vj is

(probability that it belongs to vj = fraction of edges that go to vj)

p = dj = dj
2m←

sum of all degrees§ dn = 2 ✗ no . of edges

• Expected no . Of edges from Vi to Vj

didj
2m

• Actual edges between vi and vj = Aij

a Difference between actual and expected = Aij - didj
2m

• Assume k partitions CP
, , Pz , . .

.

, Pn) of G

• For each partition , distance

@ Aij - did;
Vi
,Vj C- Px 2m

• Over all k partitions
K

E C Aij - daid÷
✗ =L Vi , Vj E Px

• Normalized

K

Q = Im E G Aij - did;
" =/ Vi ,Vj c- Px

2m



• Define matrix ✗ as indicator / partition matrix Cnxk)

✗
ij
= 1 if Vi C- Pj

- Matrix form of equation CB= A - Ld÷ )

Q =
Im

TRCXTBX)

algorithm
1. Start with n distinct clusters

2. Join 2 communities that produce the largest increase or

smallest decrease in Q

' Agglomerative algorithm

y
edges in cluster C

QLG)=L ( lELC) I - ( free degcv)) ]
CEG M 2m

• Greedy optimization = Olnlogn)



COMMUNITY DETECTION BIG PICTURE

1. Member-based community detection

• Intuition: nodes with same characteristics tend to form a

community

• Based on

1. Node degree - n-clique , k-clan , CPM
2. Node reachability - k-plex , k- core
3. Node similarity - Jaccard

,
cosine

. Let NCV;) = immediate neighbours of vi

Jaccard similarity

F-accord
(Vi
, Vj) = I Ncvi) A Ncvj) /

I Nlvi) U Ncvj) 1

Eg : cjaeeard 12,5) =/ 11,3>4} A 13,6} / =

f- = 0.25

111,3
, 4,6 }

cosine similarity

Cosine (Vi , Vj) = / Nlvi) A NCV;) I

1NWill INCVJII



Eg : [osine (2)5)
= / { 1,3>4 } A { 3,631 = ÷

= 0.41

I {1>3,43/113,631

Pearson correlation coefficient

opearson (Visvj)
= § (Ain - AT )( Ajn - Ñj)

§ (Ain-Ñi)
"

§ (Aju- Ñj)
"

2. Group - based community detection

• Based on group properties

^ Methods

1. Girvan- Newman

2. Modularity maximization / Louvain algorithm
3. spectral clustering

EVALUATION of CLUSTERS

1. With ground truth ltest / labelled data)

2- Without ground truth

1. With Ground Truth

• Precision ATP decision assigns 2 nodes to

the same cluster iff they are similar
P =

-P A TN decision assigns 2 nodes to

different clusters iff they are dissimilar



• Recall A FP decision assigns 2 nodes to the

same cluster when they are dissimilar
R=TP_
TPTFN A FN decision assigns 2 nodes to diff

clusters when they are similar
• Fl - score / F-measure

Fl = 2 ✗ PXR

FR

• Purity : fraction of instances that have labels equal to the

community's majority label

K

Purity = f- G Max I Cihljl
in

J

k-- no . of communities

N= no . of nodes

4- = set of instances with label j in all communities

G- = set of members in community i

a: calculate purity
is , i --2

N= 14

k= 2

g- =L : red ✗

j=2 : blue +

Purity = ¥ ( Max / (clusters nred) , (clusters n blue) /j

+ Max / (cluster2h red)
,
edusterznblue) / )j



(5+6) =¥ = 0.79

Q: calculate precision , recall , F1 - score , purity

TP= 5C
, +

•
(
z
t
"
Cz + 212 = 32

÷ to
✗
, +2 ×

, tz
×
, Oz +

, ✗ , t, 03 0
,
✗
2
0
, +2 0, -13

TN -- ( 5×6 -15×2+5×4) -1 (1×1-11×4) -14×1-1 1×6+1×2)
+ (1×2-11×4 -16×4) = 104

✗
z -13×203 +2 03

FN = (5×1) + (1×6+-1,121-611,2)
+ (1×4)=29

7 5

FP = (5×-1+5×1114) -1 (6×1)+(4×2) = 25

C ,
W

Cz ¥

P= TP_ = 32

TPTFP ⇒
= 0-56

R=tp¥=n = 323+22-9
= 0-52



clustering Quality
' Min intra cluster

,
Max inter cluster distance

•

Types of measures

i. External measures - require ground truth
* Rand index

☒ Purity

2. Intrinsic measures - do not require ground truth
* silhouette coefficient

* inter / intra cluster similarity

- not always reliable

Rand Index

• Let a = no . Of times a pair of items belong to same cluster

• Let b-- no . of times a pair of items belong to diff clusters

Rand index R =

9¥
Silhouette coefficient

• Range : C- 1,1 ]

* 1 : clusters well apart
* 0 : indifferent
* -1 : clusters assigned in the wrong way



• Let a = avg intra cluster distance

• Let b= avg inter cluster distance

silhouette score = b- a

maxla
,
b)


