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— Triadic  Closure

Tf 2 people have o cowwmon friend, increased tilelimood of them
\oeuom'ma friends

(a) Before new edges form. (b) After new edges form.
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Assovtative M(xiv\ﬁ

* Assorhakve Mixiwé weficientr v

Pecfect assorKakivity = normalised ascoctafivity matrix  with 18 on
o\iaxﬁom\ Ce=t)

Perfect disa&soc(w\ivi’ca-. o\l dmgmu\ clewmente o (r=-1)

Figure 8.2. A U.S. High School Friendship Network in 1994 between Races. Eighty

percent of the links exist between members of the same race (from [Currarini et al.,
2009]).

8.1.1 Measuring Assortativity for Nominal Attributes

Consider a scenario where we have nominal attributes assigned to nodes.
As in our example, this attribute could be race or nationality, gender, or
the like. One simple technique to measure assortativity is to consider the
number of edges that are between nodes of the same type. Let #(v;) denote
the type of node v;. In an undirected graph’ , G(V, E), with adjacency
matrix A4, this measure can be computed as follows,

1 1
— > Ot t) = 2= Ay o1, 1)), (B.D)
ij

(vi,0/)€E

where m is the number of edges in the graph, % is applied for normalization,

and the factor % is added because G is undirected. (., .) is the Kronecker
delta function:

0, if 5
5(x,y)={l ifiii (8.2)

Yhe



Rithh Club
Nodes with Many connections are tlustered Yogether

Ridh b coefficient for o degree

= N= Nno.of wnodes with o\e(bree 7 k

- Rith Uub CLoefficien = no.of edoet between n nodes
™Max no. of edaes bedvicen n nodes

coei cient

Keapmci\'g 7 ‘\'ravxsi-\-ivihé

\ Reciprocihﬁ

Measure of likelinood of verhces in & directed wnetwork o loe
murnally  Linked - dyodic velntionship

Cloted (oops of length 2

Only W direcred graphs

68-. mutual followeve on Twitter, Tumblr, Wnstagram



Rec.iproc€+3-. no. of reoiProm\ \>o\irs v Hee Q)mp\n / max

R= z A‘.\ A“); /_\ broce Coum of

(B E) ic) = -2- % le CP‘?—) d\‘GﬁMO\\)
€ el 2
vy | -2 [Lilr\mw\‘oer
rw?mcﬁa of elk@e ¢

where Te(A*) = A+ Rgn ¥ oo % Ag g

A" Stoves the  2-hop adjacency madrix. Diagmal elemente
are wodes With 1-hop closed loops

68'.
0 dest
o 1 {
A< I O o
0O o |
s R ) lel= 4
A =|lo | TeCRY = 2
| 0 0
R= 2 = L (focion of edops 0 net
% z waat ore veciprocal)



~NS

. va\siﬁvim
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Meawril\a trongitivity - global § local clustering cotfficients

Real wovld: ﬁiev\ds\n‘\\n ‘“‘{’)"‘\3 fransitive Chiak overage local c\ur\'crh\a

coelficients)



() Local Clud—erin@ (oefficienr (Wonte and Shro&a\h)
Tmmiﬁvim of the node tevel (undirected %m?\m
How strorgly fairs % neghboure of o wnode are connected

COv) = no.of poire of weiphboure of v; that are wwnneded
no. of palre of nefghboourt of v;

e,
C)=1 C()=13 C()=0

Figure 3.10. Change in Local Clustering Coefficient for Different Graphs. Thin lines
depict connections to neighbors. Solid lines indicate connected neighbors, and dashed
lines are the missing connections among neighbors.
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Efficient Woyy Yo Find Triples
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Figure 2.10. Components in Undirected and Directed Graphs.

Out LomYOV\en’fS of node A: set of vertices reathable frowm wnode A
via directed ‘mﬂ\s

In omponents of node - tet of verkices (inc\ud'mo A) from which
Yaere € o directed path to A

P memboers ok Sfromply  wnected component wave Sawe  in-component



M\ memboers of shromsly comnected component of A axe memoers of R
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e Bow- Tie mm%m Wely
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Pieces
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wt cvmnot reath the Sce

Tendrils
44 Million
nodes

44 Million nodes

44 Million nodes 56 Million nodes

O
5RO

~—— Disconnected components

Figure 13.7. A schematic picture of the bow-tie structure of the Web (image from Broder
et al., [80]). Although the numbers are now outdated, the structure has persisted.



GIANT COMPONENT

Real, undirected networie: tupically one lame component - plant
tomponent — ond larpe aumoer of tmall componens

@) @) @)
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0 0\03{00
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Figure 6.11. Network Segmentation. The network is decomposed into a giant component
(dark gray), star components (medium gray), and singletons (light gray).
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Figure 6.5. Maximal k-plexes for k = 1, 2, and 3.
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|COMMUNITY OETECTION |
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and weal tonnethioms 4o ouicide the skyucture
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i Maghreb/French

. (LIGVE PER(OLATION METHOD C(CPM)

Assume comwmunies formed fromy o sek of cligues ond  edges
connerting  them

Use cligwe ac Seed

tlique size k  tno.of wodes)
Networc

Algorithm 6.2 Clique Percolation Method (CPM)

Require: parameter £
1: return Overlapping Communities
2: Cliques; = find all cliques of size k
3: Construct clique graph G(V, E), where | V| = |Cliques,|
4. E ={e;; | clique i and clique j share k£ — 1 nodes}
5: Return all connected components of G
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2 GIRVAN- NEWMAN  ALGOR\THM

Giroup -oated wmmunity delection

. wﬁe betweenness: wo. of  swertest pathg Aot intlwde @ parficular
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- weaguree how bridge-like an edge ocke
- bridge ‘oetween wmmun'\ms—hiah betweennese
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ir\ih‘a\\& one big dusrer and divide)

Rewoving edpes of Wigh edae betweenness  splits  up  pgeaph
info  Cowmuniies

- Colcalate edpe etweenness for ol edges
- Remove edge with wighest oetweenness

|
2
2. Rewa\ltulote e.rhbe betweenness
% Repeat

6. Consider e aroph  Shown. hpply birvan- Newman algorithm o
find 3 tommunities. Cdpe betweenness shown below.
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- DMoﬁmm

{1,2,3,4,5,6,7,8,9}

{ 172’3’4}

Remove e(4,5), e(4,6) |
{57677’879}

| Remove e(7,9)

{5’6’778}

{9}

Computing Betweanness Values

1. Perform a breadth-first search of the graph, starting at A.
2. Determine the number of shortest paths from A to each other node.

3. Based on these numbers, determine the amount of flow from A to all other nodes

that use each edge.

' tlawmple

Figure 3.18. The first step in the efficient method for computing betweenness values is to
perform a breadth-first search of the network. (a) A sample network and (b) the results of
breadth-first search from node A are shown; over the course of the method, breadth-first

search is performed from each node in turn.
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Figure 6.15. Commmunity Evaluation Example. Circles represent communities, and

items inside the circles represent members. Each item is represented using a symbol, +
x, or A, that denotes the item’s true label.
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